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Abstract

For 0 < a < 1, let/a(x) = 2,1,2~cliRi(x) for 0 s$ x < 1, where {#,}£, is the sequence
of Rademacher functions. We give a class of fa so that their graphs have Hausdorff
dimension 2 —a. The result is closely related to the corresponding unsolved question
for the Weierstrass functions.

1. Introduction

For 0 < a < 1, let
<X>

/«(*) = S 2-«Rt(x) ( 0 < * < l ) I
i - l

where .ft,, for { = 1,2,..., denotes the Rademacher functions: -ft, (a;) is defined on U
with period 1, takes values 1 and — 1 on the intervals [0,|) and [|, 1) respectively, and
Rt(x) = i?1(2'~1a;) for i > 1. In this note we will give a sufficient condition to determine
the Hausdorff dimension of the graph Ff of / , (denoted by dim Py ). This is closely
related to the well known open problem whether the graph of the Weierstrass
function

Wa(x) = E A"*'sin (\lnx) (0 < x < 1),
i - l

where A > 1, has Hausdorff dimension 2 —a: see [3], p. 114 and [8]. (Note that
R((x) = sgnsin (2inx) except when x is a zero of sin (2inx).)

Let Fa(y) = \{x e [0,1): f^x) < y}\ be the distribution function of/,, where |̂ 4|
denotes the Lebesgue measure of a measurable subset A of R. Among the other
results we prove

THEOREM 1-1. Suppose that Fa is absolutely continuous and F'aeLp for some p > 1.
Then dim T, = 2 - a .

./a

The function/, can be considered as the random variable of the sum of a sequence
of independent Bernoulli trials. The distribution Fa can hence be obtained as the
infinite convolution of the Bernoulli distributions. It follows from a theorem of
Jessen and Wintner[6] that.Fa is either absolutely continuous or purely singular. The
determination of which type is however, very difficult (see Erdos[2], Garsia[4],
Kahane and Salem[7], Salem[9] and Wintner[10]). Although it is known that Fa is
absolutely continuous for some a. and that Fa is purely singular for some a, a
complete description for 0 < a < 1 is still unknown.
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Theorem 11 is proved in Section 2; the proof actually goes through with a weaker
assumption on Fa, namely, that Fa satisfies certain integrated Lipschitz condition
(Theorem 26). The known results on the absolute continuity of Fa, the relevance of
the above integrated Lipschitz condition, and other remarks on the dimension of Ff

are discussed in Section 3.

2. The theorem

Let N ={1,2,. . .}. For neN and 0sS/fc=$2n-l, let Ink be the dyadic intervals
[2~"k, 2~n(k + 1)) in [0,1), and let Sf be the class of dyadic squares in [0,1) x U. For
s > 0, we use JO" to denote the Hausdorff s-dimensional measure on IR2, i.e. for any
subset E in IR2,

Jf S{E) = lira inf {2 (diam Ut)' :E^\JUt, diam U{ < 8},
<5->0+ i i

where {£/,} are open subsets in IR2. The Hausdorff dimension of E, denoted by &\mE,
is defined by

dim E = inf{s > 0: Jffs(E) = 0}

(which also equals sup{s > 0:3tf's(E) = oo}). It is known that if we replace the Ut by
dyadic squares, the dimension of E is unchanged.

In this section we will fix 0 < a < 1. We can hence use/, F and F to denote fa, Fa

and 1} respectively without causing confusion.

LEMMA 2-1. For 0 < a < 1, 3^2~lx(T) < oo, and hence dim F ^ 2 —a.

Proof. The proof is the same as in [3], theorem 8"1 for Lipschitz functions.

Let lnjc be a dyadic interval in [0,1), l e t / be restricted on lnH and define the
corresponding distribution function Fn k by

Fn<k(y) = \{xelny.f(x)<y}\.

LEMMA 2-2. (i) For xeln k,f(x) = cn lc + 2-(xnf(2n(oc-2-nk)) for some constant cnk,
and (ii) for yeU, Fnk(y) = 2-nF(2^{y-cnk)).

Proof, (i) For xeln k, using the periodicity of R{ we can write

fix) = S 2-"%(x) + 2-an £ 2-*%(2n(x-2-nk)) = cnJC + 2-<"lf(2n(x-2-nlc)).
t - l

(ii) Let yeU. Then by (i) we have

Fntt(y) = \{xelny.cn,k + 2-*nf(2n(x-2-nk)) < y)\

= \{xelny.f(2n(x-2-nk)) < 2*n(y-cn,k)}\

):f{u) < 2-»(y-cn>t)}| = 2-"F(2?»(y-cntk)).

In the following we will give a simple proof of a special case of Theorem 1*1, which
also serves as motivation for the more elaborate proof in Lemma 2-5.

Let P: IR2 -> (R be the natural projection defined by P(x, y) = x.
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THEOREM 2-3. IfF is absolutely continuous and F'eL00, then 0 < 2fC2~a(F) < oo, and
hence dim F = 2 —a.

Proof. Let M be the essential supremum of F', and let {«SJ c ^ be an arbitrary
cover of F, where 54 = /n ( J t ( x [j/t.,y< + 2~"(). Then by Lemma 2-2 we have

<(yt - cB|> t | + 2-"')) - ( j

. (1)
It follows that

S(diam<Sj)
2-a = cS2-"' ( 2-a ) ^ cM"12 |P(^ fl T)| = cM"1,

< t i

where c = 2<2-a)/2, and hence 0 < Jf 2~a(F). The assertion follows from this and
Lemma 2-1.

The crucial step of using the boundedness of F' is inequality (1). The following
two lemmas are devised to show that under appropriate hypothesis, the squares that
violate (1) are relatively few.

LEMMA 2-4. For 0 < S < 1 — a, let I be a dyadic interval in [0,1) of size 2~n, and let
tfj^Sf be the smallest disjoint collection of dyadic squares of size 2~n that covers
P'^I) 0 T. Let y'j £ $/>1 consist of those Se^j such that

\P(S fl T)| > |/|2-*-*. (2)

Then 6^'j has at most [2M1~a~S)] members, ([x] denotes the largest integer which is not
greater than x.)

Remark. We refer to the above S the ' bad' squares. Since it needs [c2M1~a)] disjoint
squares of size 2~" to cover P~X(I) 0 F, where c is some constant depending only on
a, the portion of bad squares is at most c2~nS.

Proof. Let q be the number of squares in £/",. Then

and hence q < [2n<1-*-®].

LEMMA 2-5. Suppose that there exist M > 0 and e1> 0 such that for each 0 < e < ev

there exists h(e) > 0 with the property that

Q

2 F(at + h) -F(at) < M<f*K\ (3)
i-i

for all 0 < h ^ h(e), and for all finite families of disjoint intervals {[aoat + h)}^_v Then
dimF = 2-OL.

Proof. Given S > 0, choose 0 < e < ex close to e1 so that 8e1 + (1 — a) (e—ex) > 0 and
denote this number by rj. Let ne N be such that

M 2 2-"' < i. (4)
n-n

Without loss of generality, we can assume that (3) holds for all h ^ 2(a~1)".
4-2
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For any n > n, let In k be a dyadic interval of [0,1) and let S/'l , 6^'j be denned
as in Lemma 24. Let Bnk = U^Sf-.S^S^^ J where Sf = Inykx [uf,ut + 2~n). Then

|P(5n,fcn HI = S \P{St(\ HI =

Here we have used Lemmas 2-2 and 24 and inequality (3). Define

2 " - l

B= U UB,,f
n^n k—0

Then the above estimate and the inequality (4) imply that

00

\P(B n r)| ^ M s 2-"' < i.

(This means that the projection of all the bad squares of size less than 2~" has
Lebesgue measure less than £.)

Now let # £ 5^ be an arbitrary cover of F such that each Sle
(& has size less than

2"*. If St $ 5, then

and we have

2 (diam 5,)1—« =

where c = 2(2-a-*)/2. Hence ^f 2-«-*(r) > 0. This implies that dim F ^ 2-O.-8. Since
8 is arbitrary, we conclude that dimF ^ 2 —a, and hence dim F = 2 —a by Lemma
21.

THEOREM 2-6. Suppose that there exists p > 1 such that for every 1 < ft < p,

1 f00

lim -r-R W(y + h)—F(y)\pdy = 0. (5)
A-*O+ J —a-oo

dimF = 2 - a .

Proof. We first claim that for any h > 0,

la;.
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Indeed,

I fa+h. < / fa+2h fa \
- (F(x + h)-F(x))dx = -[ F(x)dx-\ F(x)dx\
"•Ja-h "•VJa+A Ja-h I

')
>A

( a -

Now for any finite family of disjoint intervals {[0,,0, + A)}^!, with union U, writing
V = U*=1[at — h,at) we have

S^Oi + A J - J ' ^ X - S |̂ (a: + A)-
t- l "-1-1J a,-h.

\F(x + h)-F(x)\dx\
J

P' ( |F(:C + A) ~F^V dx)

/ I f 0 0 \1 /p

( - J |JP(X + A) - J'(x) | pdx\ ,

where l/p+ 1/p' = 1, and 1 < ft < p. To check that the condition in Lemma 2-5 is
fulfilled, we let i f = 1, et = l/p', e = (/3-l)/p for 1 < ft < p, and let h(e) be such that
for 0 < h

xj2\—o\ \F(x + h)-F(x)\pdx\ ^ 1.
1 - 0 0

Proof of Theorem 1-1. The assertion is a corollary of Theorem 2-6 since F is
absolutely continuous and F' eLp for some £> > 1 if and only if

is bounded (see [5]), hence (5) is satisfied. It can also be proved by a direct
verification of (3). Let E = U^la^ty + h). Then

9 r / fco \i/P

2 (f(ai + A)-^(a,))= #'(a:)da;<|j&|1/p' \F'(x)\pdx\
i-l JE VJ-OO /

\F'(x)\Pdx\ qWh11*',
I

where 1/p+l/p' = 1. By taking et = l/p' in Lemma 25, condition (3) is clearly
fulfilled.
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3. Some open questions

The Fourier transformation of the distribution function Fa is given by

0 0

£.(«)= II cos (2-»*tO.
t = l

By studying the function La(u), Wintner[10] proved that if a = l/n, where neN,
then Fa is absolutely continuous. (Actually F'aeLx': see Garsia[4], theorem 1*8.)
Erdos[2] proved that for any positive integer ra there exists a /?(ra) < 1 (sufficiently
close to 1) such that for almost all a with /?(ra) < 2~a < 1, Fa has an rath derivative.
On the other hand by using some algebraic number theory, Salem [9] characterized
the a such that La(u) -^OasM^-oo as those such that 2a is a Pisot-Vijayaraghavan
number. By the Riemann Lebesgue Lemma, such 7^ cannot be absolutely continuous.
Some more special cases including a necessary and sufficient condition for Fa to be
absolutely continuous with a derivative in Lp for some p > 1 had also been obtained
by Garsia[4]. Despite all these the following is still an open question.

Question 1. Is Fa absolutely continuous for almost all ae(0,1) ?

The condition in Theorem 2-6 is slightly weaker than the condition that Fa is
absolutely continuous with F'cieLp for some p > 1.

Question 2. Does Fa satisfy (5) for all a 6(0,1)?

Beyer [1] showed that the Hausdorff dimension of the level sets of fa, with
a = 2>3> •••> ' s l ~ a f°r almost all levels. Combining this result with an argument
of Marstrand [3], theorem 5-8 it can be shown that dim Yf = 2 — a for a = \, \,

Question 3. Does the absolute continuity of Fa imply that the level sets have
dimension 1—a?

Question 4. Can the argument used in this note be applied to solve the dimension
problem for the Weierstrass functions Wa or the Takagi functions

00

(Ta(x) = 2 Xr^f^x),

where A > 1, \Jr(x) is of period 1 and equals 1 —11 — 2x\ on [0,1]) ?

For sums of Rademacher functions other than the geometric sum, Beyer [1] proved
that if the sequence {at} is in l2, but not in lv then Hi^^R^x) assumes every
preassigned real value on a set of Hausdorff dimension 1. This implies that its graph
has Hausdorff dimension 2.
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